Terahertz Photoconductivity in Disordered Single-Wall Carbon Nanotube Films

Christopher W. Miller,¹,² Taneli Juntunen,³ Naoki Fujimura,³ Yukio Kawano,³ Xiaowei He,⁴ Robert H. Hauge,⁴ Junichiro Kono⁴,⁵

¹Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A.
²NanoJapan: International Research Experience for Undergraduates Program, Rice University, Houston, Texas, U.S.A.
³Department of Physical Electronics, Tokyo Institute of Technology, Tokyo, Japan
⁴Department of Electrical and Computer Engineering, Rice University, Houston, TX, U.S.A.
⁵Department of Physics and Astronomy, Rice University, Houston, Texas, U.S.A.

The terahertz (THz) frequency range, from 0.1 to 10 THz, is the latest frontier of the electromagnetic spectrum to be exploited by solid-state technologies. Given their unique properties of exhibiting characteristics of both infrared and microwave waves, THz waves have provoked much interest in the scientific and engineering communities. Recently, single-wall carbon nanotubes (SWCNTs) have emerged as important materials for THz device applications such as THz polarizers [1], detectors [2], and sources. SWCNTs absorb THz radiation across a wide spectral range in a strongly polarization-sensitive manner; in addition, they are flexible, mechanically strong, and highly conductive both electrically and thermally. Here, we are investigating the photoconduction properties of a macroscopically aligned SWCNT film in response to THz radiation as a function of temperature to probe signs of quantum mechanical transport processes such as quantum tunneling in the presence of strong disorder. We first measured the resistance of the SWCNT film as a function of temperature in a temperature range of 3–20 K with particular interest in the 3–4 K range, observing a variable-range hopping transport mechanism. To perform a comparative study of how THz radiation influences the conductivity, we are also performing resistance measurements under THz illumination. Furthermore, to understand how THz radiation of varying frequencies may influence the transport mechanisms, we are performing the measurements in this temperature range with THz waves of varying frequencies. Given that the transport mechanisms under similar conditions have yet to be investigated, we are interested in understanding the terahertz induced response.

Terahertz Photon-Assisted Variable Range Hopping in Macroscopically Aligned Single-Wall Carbon Nanotube Films

Christopher W. Miller,1,2 Taneli Juntunen,3 Naoki Fujimura,3 Yukio Kawano,3 Xiaowei He,4 Robert H. Hauge,4 Junichiro Kono1,5

1Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A.
2Nanojapan: International Research Experience for Undergraduates Program, Rice University, Houston, Texas, U.S.A.
3Department of Physical Electronics, Tokyo Institute of Technology, Tokyo, Japan
4Department of Electrical and Computer Engineering, Rice University, Houston, TX, U.S.A.
5Department of Physics and Astronomy, Rice University, Houston, Texas, U.S.A.

Introduction

Background

Objective:
- Investigate SWCNT film conductivity as a function of temperature
- Identify the effect of THz radiation on photoconductivity

Motivation:
- New information about the effect of THz radiation on the conductivity and electron transport mechanisms of a system with high disorder

Previous Research:
- Observed a photothermoelectric effect shift in I-V curve
- Strong polarization dependence of photo voltage

Device History

Experimental Setup

Producing THz Radiation for Device Illumination
1. Pump CO2 gas into CO2 laser
2. CO2 laser -> IR beam
3. IR Beam -> FIR laser -> THz beam
4. THz beam illuminates device in cryostat
5. Amplifier connected to device records output current

Measurement Process

1. Exposed unilluminated device to 2.9-300K temperatures
2. Recorded I-V characteristics for each temperature value to determine resistance
3. Repeated measurements with THz exposure in the temperature range of 2.9-20K
4. Recorded the effect of different THz frequencies on the conductivity via I-V characteristics

*The resistance was calculated by recording the current generated by a constant voltage through the sample

Results and Discussion

Localization in SWCNTs

Variable Range Hopping in Strong Disorder

Mott’s Law for VRH Conductance

\[R(T) = R_0 \exp\left(\frac{E_f}{kT}\right)^{1+d} \]

- Used to fit experimental data for d=2
- Exact reasons why d=2 for our device are still not known

Types of Disorder in the SWCNT System:
- PN junction interactions
- Potential energy barriers (e.g. Schottky barriers)
- Material impurities
- Random diameters
- Nanotube contact points

Mott’s Law Fit Line

\[T^{-1/(1+d)} \]

- Strong correlation between experimental data and Mott’s Law for 2D-VRH
- Slight discrepancy in the 3-4K range
- Trend: higher temperature, less resistance
- Data resembles the behavior of a logarithmic function; as expected from Mott’s Law

THz Photoconductivity Response

- General trend is that the two graphs show the same behavior and are approximately equivalent in resistance value
- Two plots noticeably diverge in what appears to be the temperature range of 1-5K
- Interested in observing the effect of different THz frequencies

Device Conductivity & Temperature Dependence

Temperature Dependence

- Data resembles the behavior of a logarithmic function; as expected from Mott’s Law

Outlook and Future Study

- Perform comparative measurement of THz frequencies
- Investigate real-time response mechanism of the device under THz illumination

Acknowledgements

This research project was performed as part of the 2014 Nanojapan International Research Experience for Undergraduate Program through the support of a National Science Foundation Partnership for International Research & Education grant (NSF-PIRE OISE-0968405). For more information on Nanojapan see: http://www.nanojapan.rice.edu

Contact Email:
Chris Miller – millercw@live.unc.edu