Monte Carlo Study of Stacking Fault Interactions during 3C-SiC Epitaxial Growth

Ramya L. Gurunathan,1,2 Hiroyuki Nagasawa,3 and Maki Suemitsu3

1Department of Materials Science and Engineering, Pennsylvania State University, State College, PA, US
2NanoJapan Program, Rice University, Houston, TX, US
3Research Institute for Electrical Communication, Tohoku University, Sendai, Japan

3C-SiC has emerged as an attractive wide bandgap semiconducting material for high temperature, high frequency, and high voltage applications. It exhibits a low density of states at the 3C-SiC/SiO2 interface, making it a viable material for power-switching MOSFETs which are of particular interest to motor drives in electric vehicles. Moreover, 3C-SiC can be grown on a Si substrate to drive down production costs. However, as a result of the 19.7% lattice mismatch between Si and 3C-SiC, a high density of stacking faults are generated and a specific interaction between adjoining stacking faults generates an electrically active defect which can degrade the performance of 3C-SiC devices. Here we employ Monte Carlo simulations to better understand the interaction of stacking faults during epitaxial growth of 3C-SiC on a Si substrate. By modeling the generation, annihilation, and termination of stacking faults in 3C-SiC grown on the Si(100) face as well as the Si(111) face, we can compare the densities of stacking faults and electrically active defects for both geometries. For both cases, we monitored the evolution of defect density as a function of 3C-SiC film thickness for various different sizes of crystals ranging from 15×15 µm² to 1000×1000 µm². In contrast to that of (100)-oriented 3C-SiC, the stacking faults on the (111) face have unified polarities which gives rise to increased annihilation. Therefore, we expect to see that the stacking fault density will decrease more rapidly in the case of (111)-oriented 3C-SiC growth.
Monte Carlo Simulation of Stacking Fault Interactions during 3C-SiC Epitaxial Growth

Ramya L. Gurunathan1,2, Hiroyuki Nagasawa3, Maki Suemitsu3

1Pennsylvania State University, 2NanoJapan IREU, 3Research Institute for Electrical Communication, Tohoku University

Motivation

3C-SiC shows promise for use in high temperature, high voltage, and high frequency power switching devices. However, large stacking fault densities within the crystal can degrade electrical properties. Therefore, it is important to study stacking fault interactions during epitaxial growth so that defect reduction can be optimized.

Stacking Faults (SFs) in 3C-SiC

- SFs are generated at the interface between the 3C-SiC crystal and Si substrate during epitaxial growth in order to minimize the incoherence generated by the 19.7% lattice mismatch
- SFs propagate along the four equivalent (111) planes of 3C-SiC

3C-SiC(001) Face

- SF Interactions: SFs with like polarity: one will annihilate the other SFs with distinct polarity: each terminate the other’s propagation
- Point defects at SF junctions can introduce states into the band gap

3C-SiC(111) Face

- 4 Orientations of SFs expressed: 2 with Carbon Polarity, 2 with Silicon Polarity
- C polar and Si polar SFs are related by 90° rotations

Geometry of Simulation Setup:

- 3C-SiC(001): C-polar SFs
- 3C-SiC(111): Si-polar SFs

Evolution of a SF Interaction Simulation:

Key Simulation Parameters:

- Stable Generation Probability for SFs: 12.5%
- Expansion Probability: 12.5% (for Si-polar SFs)
- Annihilation Balance: 50/50
- Angle Offset: 12°

Stacking Fault Density Reduction

Dislocation (SF Edge) Density Reduction

Comparison between (001) and (111) Face

Future Work

Depending on the polarity, SFs in 3C-SiC may be terminated by Shockley-type partial dislocations which can glide and interact along the four equivalent (111) planes. The glide of dislocations can change the dimensions of the stacking fault.

Future simulations can be made more comprehensive by employing 3D mapping of partial dislocations and incorporating dislocation glide into the algorithm.

Acknowledgements

This research project was conducted as part of the 2014 NanoJapan: International Research Experience for Undergraduates Program with support from a National Science Foundation Partnerships for International Research & Education grant (NSF-PIRE OISE-0968405). For more information on NanoJapan see http://nanojapan.rice.edu. Thank you also to the Presidential Leadership Academy at Pennsylvania State University for financial support.

Contact

Ramya Gurunathan
Pennsylvania State University
Email: rlg5274@psu.edu
Website: http://ramyagurunathanportfolio.weebly.com/

References

2. Nagasawa, H. Planar Defects in 3C-SiC grown on Si(001) Substrate (2014)