Graphene Quantum Dots Embedded in a Polymer Film

S. Ushiba1,2, X. He2, E. Haroz2, J. Peng3, P. M. Ajayan3 and J. Kono2

1NanoJapan Program and Department of Applied Physics, Osaka University

2Department of Electrical and Computer Engineering, Rice University

3Department of Mechanical Engineering and Materials Science, Rice University

Graphene quantum dots (GQDs) are a few nanometer sized pieces of graphene sheet that exhibit photoluminescence (PL) in the visible region, as well as unique electron transport and superior mechanical properties. The PL originates from large edge effects and exhibits strong quantum confinement effects. The intrinsic characteristics of GQD can be applied to various devices, e.g., light emitters, optoelectronic devices and photovoltaics. The technique to embed GQDs in a solid material is indispensable for realizing GQD-based devices. Here we report a simple method that produces a GQD-polymer composite film by drying a mixture solution of GQD and poly-vinyl alcohol (PVA). GQDs were homogeneously dispersed in the film, which was measured by absorption and Raman spectroscopy. The PL of GQDs in the film was also investigated. The simple technique enables the development of GQD-based composites for numerous applications of GQDs.
Graphene Quantum Dots Embedded in a Polymer Film

S. Ushiba¹,², X. He², E. Haroz², J. Peng³, P. M. Ajayan³ and J. Kono²

¹ NanoJapan Program and Department of Applied Physics, Osaka University
² Department of Electrical and Computer Engineering, Rice University
³ Department of Mechanical Engineering and Materials Science, Rice University

Email: ushiba@ap.eng.osaka-u.ac.jp

Introduction: Graphene Quantum Dots

Graphene Quantum Dots (GQDs) are a few nanometer sized pieces of graphene sheet that exhibit photoluminescence (PL) in the visible region due to size effects and quantum confinements, as well as unique electron transport and superior mechanical properties.

Absorption and Photoluminescence of GQDs in water

The absorbance peak at 310 nm is a feature of GQDs due to quantum confinement effects and edge effects. GQDs exhibit PL in the visible region, which depends on the excitation wavelength. The dependence of PL could be attributed to the size effect of GQDs.

Density Gradient Ultracentrifugation (DGU) for the size-separation

PL peaks were significantly blue-shifted by 10 nm after DGU. DGU could remove large-diameter GQDs and/or aggregated GQDs.

Purpose: To develop a GQD/Polymer composite

We aim to develop a simple method that produces a GQD-polymer composite. Here we demonstrate the composite film by drying a mixture solution of GQD and poly-vinyl alcohol (PVA). The PL of GQD/PVA composite film and the temperature-dependence of PL intensity are investigated.

Fabrication Procedure: GQD/PVA composite film

1. Chemical Synthesis of GQDs
 - Graphite
 - Cut down
 - Neutralization
 - GQDs

2. Water-dissolved PVA
 - PVA 1.5 g
 - PVA: poly vinyl alcohol
 - Stir

3. GQD/PVA composite film
 - GQD/PVA film
 - Cast
 - Dry & Peel

PL characterization of GQD/PVA composite film

PL spectra at 514.5 nm excitation

The overall PL intensity increased with decrease temperature. The enhancement originated from the suppression of thermal quenching.

Summary

GQD/Polymer composites were developed by the simple method. The PL from GQD/PVA composite film was suppressed, but enhanced with decrease of temperature.

Acknowledgement

This research was sponsored by Rice University and the NSF Grant (CISE-0988405). I would like to thank Saunab Ghosh for the PL measurements and the Kono, Ajayan, and Kawata groups for their kind advice. In addition, I would like to express gratitude to all of the NanoJapan students.