Spin–Dependent Tunneling in Heusler Alloy–Based Magnetic Tunnel Junctions

<u>T. Ogunbekun</u>, Kazuki Yonemura , Takayuki Ishikawa, and Masafumi Yamamoto Division of Electronics for Informatics, Graduate School of Information Science and Technology, Hokkaido University, N14, W9, Kita-Ku, Sapporo 060-0814, Japan.

The Magnetoresistive Random Access memory (MRAM) has the potential of surpassing present semiconductor-based RAM devices because it offers high speed, high density, unlimited write/read endurance and in addition, unlike the DRAM and SRAM, is nonvolatile, that is, it does not lose information when power is turned off. An MRAM cell consists of a magnetic tunnel junction (MTJ) and a MOS transistor. MTJs in turn consist of a thin insulating barrier between two ferromagnetic electrodes. The most important parameter of an MTJ is its tunneling magneto-resistance ratio (TMR). A high TMR ratio is desired. Half metallic ferromagnets (HMFs) are characterized by complete spin polarization at the Fermi level that corresponds to a high TMR ratio. Heusler alloys are a type of HMF that has been theoretically proven to demonstrate a half metallic nature. We fabricated epitaxial MTJs with a Heusler alloy thin film of Co₂Cr_{0.6}Fe_{0.4}Al (CCFA) as a lower electrode, an MgO barrier and a Co₅₀Fe₅₀ upper electrode. A relatively high TMR ratio, up to 109% at room temperature (RT) (317% at 4.2K) has been achieved for these CCFA/MgO/CoFe MTJs, which were ex situ post-fabrication annealed at 175°C. The purposes of our present study are to understand the key factors that influence spin dependent tunneling characteristics in these Heusler alloy-based MTJs, and then to further enhance the TMR ratio. Recently, we introduced *in situ* annealing at a temperature T_a , just after deposition of the upper CoFe electrode to investigate how the TMR characteristics vary with T_a . Our results show a significant upward scale in TMR ratios for T_a ranging from RT to 500°C. The TMR ratio increased with increasing T_a from 95% at RT (225% at 4.2K) for T_a of RT to 152% at RT (335% at 4.2K) for T_a of 500°C. To further clarify this dependence of the TMR ratio on T_a , we investigated I vs. V, dI/dV (= G) vs. V and d^2I/dV^2 vs. V characteristics. The bias voltage, V was defined with respect to the lower CCFA electrode. In general, the slopes of the G_{AP} and G_{P} were distinctly lower for MTJs with T_{a} of 500°C than those for MTJs with T_a of RT. Precisely, the lower slope G_{AP} was observed for both V > 0 and V < 0, and the lower G_P for V > 0 in the region from |V| = 0 to ~0.4 V. These results indicate that the electronic density of states around the Fermi level for minority spins in interfacial regions of both the lower CCFA and the upper CoFe, both facing the MgO barrier, decreased with increasing T_a from RT to 500°C. These led to increased spin polarization of both the CCFA and the CoFe in the interfacial region. These findings are consistent with the increased TMR ratios observed for MTJs with T_a of 500°C.

Spin-dependent tunneling in Heusler alloy-based magnetic tunnel junctions

<u>Tolulope Ogunbekun</u>, Kazuki Yonemura , Takayuki Ishikawa, and Masafumi Yamamoto Division of Electronics for Informatics, Graduate School of Information Science and Technology, Hokkaido University, N14, W9, Kita-Ku, Sapporo 060-0814, Japan.

Abstracts

We fabricated epitaxial MTJs with a Heusler alloy thin film of $Co_2Cr_{0.6}Fe_{0.4}AI$ (CCFA) as a lower electrode, an MgO barrier and a $Co_{50}Fe_{50}$ upper electrode. A relatively high TMR ratio, up to 109% at room temperature (RT) (317% at 4.2K) has been achieved for these CCFA/MgO/CoFe MTJs which were ex *situ* post-fabrication annealed at 175°C. The purposes of our present study are to understand the key factors that influence spin dependent tunneling characteristics in these Heusler alloy-based MTJs, and then to further enhance the TMR ratio. Recently, we introduced *in situ* annealing at a temperature T_{a} , just after deposition of the upper CoFe electrode to investigate how the TMR characteristics vary with T_{a} . Our results show a significant upward scale in TMR ratios for T_{a} ranging from RT to 500°C. The TMR ratio increased with increasing T_{a} from 95% at RT (225% at 4.2K) for T_{a} of RT to 152% at 4.2K) for T_{a} of S00°C.

Introduction

NOTECHNOLOG

♦ To further clarify this dependence of the TMR ratio on T_{a} , we investigated / vs. V, d//dV (= G) vs. V and $d^2//dV^2$ vs. V characteristics. (The bias voltage, V was defined with respect to the lower CCFA electrode).

♦ In general, the slopes of the G_{AP} and G_P were distinctly lower for MTJs with T_a of 500°C than those for MTJs with T_a of RT.

♦Precisely, the lower slope G_{AP} was observed for both V > 0 and V < 0, and the lower G_P for V > 0 in the region from |V| = 0 to -0.4 V.

electronic density of states around the Fermi level for minority spins in interfacial regions of both the lower CCFA and the upper CoFe, both facing the MgO barrier, decreased with increasing T_a from RT to 500°C. ©These led to increased spin polarization of both the CCFA and the CoFe in the interfacial region. ©These findings are consistent with the increased TMR ratios observed for MTJs with T_o of 500°C.

Research conducted at Hokkaido University as a participant in the Rice University NanoJapan 2008 program sponsored by an NSF-PIRE grant.