Two-dimensional electron systems (2DES) in high magnetic fields are known to exhibit exact resistance quantization, as described by the quantum Hall effect (QHE). The electronic state of the QHE is characterized by its long mean free path or semi-long-range coherence. Combination of the semi-coherent states and semi-localized states of certain impurities (e.g., rare earth ions, quantum dots) may open up possibilities for new devices, such as quantum coherent devices and quantum computers. To investigate this possibility, we have grown 2DES samples with Yb-doping and performed basic measurements in multiple-extreme conditions to clarify the interaction between these rare-earth impurities and the 2DES. Under examination in this study are typical AlGaAs/GaAs heterostructures with and without Yb-ion doping near the 2DES. They have been grown with molecular beam epitaxy and fabricated into standard Hall bar geometries by means of photolithography. Transport and optical measurements under various illumination conditions were performed in magnetic fields up to 25 T at ~1.5 K. In the case of the non-doped samples, clear QHE properties were found in both transport and photoluminescence signals. On the other hand, quantum oscillations were not observed in the Yb-doped sample, and measurements were largely affected by weak illumination around the 1-μm wavelength. Additionally, this sample’s contacts exhibited non-ohmic properties even with different conditions of contact fabrication. We will discuss these results in terms of Yb-ion-related states and their interaction with the 2DES.
High-Field Study of Yb-Doped AlGaAs/GaAs 2-D Electron Systems

M. Behlmann1,2, Y. Imanaka1, K. Takehana1, T. Kaizu1, T. Takamatsu1
1 Quantum Dot Research Center, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
2 Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, Oklahoma, USA

Motivation for Yb-Doping

• Quantum Computing: Yb spin states manipulated by local sensing equipment are a possible candidate for quantum bits (qubits). Interaction between multiple qubits could be mediated by the macroscopic coherence of quantum Hall states.

Sample Preparation

Molecular Beam Epitaxy

<table>
<thead>
<tr>
<th>Sample Preparation</th>
<th>Molecular Beam Epitaxy</th>
</tr>
</thead>
<tbody>
<tr>
<td>T228 Sample</td>
<td>Yb116 Sample</td>
</tr>
<tr>
<td>AlGaAsSi (80 nm)</td>
<td>GaAs</td>
</tr>
<tr>
<td>AlGaAs (20 nm)</td>
<td>GaAs</td>
</tr>
<tr>
<td>AlGaAs (150 nm)</td>
<td>AlGaAs</td>
</tr>
<tr>
<td>AlGaAs (280 nm)</td>
<td>AlGaAs</td>
</tr>
<tr>
<td>AlGaAs (200 nm)</td>
<td>AlGaAs</td>
</tr>
<tr>
<td>GaAs (10 nm)</td>
<td>AlGaAs,Yb</td>
</tr>
<tr>
<td>GaAs (160 nm)</td>
<td>ZEG-5</td>
</tr>
<tr>
<td>GaAs (180 nm)</td>
<td>ZEG-5</td>
</tr>
<tr>
<td>GaAs (200 nm)</td>
<td>ZEG-5</td>
</tr>
<tr>
<td>Substrate temperature: 680 °C, AlGaAs,Yb</td>
<td></td>
</tr>
</tbody>
</table>

Hall Bar Fabrication

• Resist-coating
• Pre-bake
• Photolithography
• Post-bake
• Wet chemical etching
• Metal evaporation
• Annealing
• Wiring

Experimental Setup

High magnetic field

We used both a superconducting magnet (up to 15 T) and a specially-designed water-cooled magnet (25 T). Each magnet has a cryostat and pump system, which was used to achieve experimental temperatures of ~1.5 K. Samples were inserted into the magnets using a probe with optical fiber and copper wiring.

Transport Measurements

An AC excitation signal wired in series with a large load resistance and the contacts on opposite ends of the Hall bar. XX and XY (Hall) voltage were measured simultaneously using lock-in amplifiers.

Optical Measurements

We shone a green, solid-state laser (532 nm) into the optical fiber of the probe. The photoluminescence (PL) signal returned via optical fiber to a spectrometer, which monitored light intensity over a range of wavelengths simultaneously.

Conclusions

In the undoped T228 heterostructure sample, we can observe oscillations in both transport and optical data. The QHE manifests itself clearly, and appearance of new photoluminescence peaks corresponds to the filling factors 1 and ⅓. Remote Yb-doping appears to cause localization in the 2DEG, but the metal-insulator transition can easily be controlled using light in the 1 μm wavelength range. With the Yb116 sample illuminated oscillations in R_{xx} are very distinct, but no oscillations were detected in the optical data.

Motivation for Yb-Doping

• Optical Devices: Wavelengths of ~1 μm arises from 4f intra-level transitions in Yb^{3+} ions. These wavelengths can be used in optical communications devices.

Our Experiment

We fabricated both undoped and Yb-doped AlGaAs/GaAs heterostructures with standard Hall bar geometries. To investigate the properties of each sample’s 2DEG, we made transport and magnetophotoluminescence measurements. Data were taken at low temperatures and high magnetic fields under a variety of sample illumination conditions.

Yb116: Effects of Yb-Doping

Transport

• Clear Shubnikov-de Haas oscillations are observed in R_{xx} data only when the sample is illuminated (900-1000 nm light).
• This illumination effect shows the controllability of the metal-insulator transition in Yb-doped quantum structures.
• XX resistance data differs greatly between 1000 and 950 nm illumination wavelengths.

Optical

• PL intensity oscillations are not observed in the Yb-doped sample. This is liked due to localization in the sample caused by the Yb atoms.
• Photoluminescence from a bulk GaAs:Yb sample is observed to be ~1.23 eV (λ = 1 μm).

Research conducted at the National Institute for Materials Science (独立行政法人 物質・材料研究機構) as a participant in the Rice University NanoJapan 2008 program sponsored by an NSF-PIRE grant.