Graphene has recently jumped to the forefront of new scientific research after having been isolated a few years ago. Graphene's uniqueness lies in its electronic stability up to normal temperatures, exemplified by the observation of the quantum Hall effect at room temperature. Other distinctive features include the behavior of electrons as massless Dirac fermions, and its classification as a zero-gap semiconductor. However, the possibility of Cooper pair propagation through graphene is not immediately apparent from what had previously been known. While a few experimental papers on graphene as a superconducting weak link have already been published, a broader investigation on the topic is still pending. This investigation observes graphene as a superconducting weak link from mechanically cleaved graphite. We have chosen for our superconducting electrodes a well-known contact: an Au/Pb/In alloy deposited in layers of $75/1070/235\text{Å}$ respectively. This was used for its known stability as well as its high T_c, both desirable qualities in any superconducting structure. The ends of each electrode are 6μm apart. We expect to see a significant impact from the proximity effect in our planned measurements.
Graphene as a Superconducting Weak Link

Valla Fatemi, Keita Konishi, Tsubasa Ishizaki, Kanji Yoh
Research Center for Integrated Quantum Electronics, Hokkaido University, Japan

Introduction

Graphene is an increasingly popular topic in modern solid state research. It's high electronic stability and quality at room temperature make it particularly distinctive, especially among two-dimensional constructions. Cooper pair propagation through graphene is not immediately apparent from the initially found qualities. It has not been shown to be superconducting yet, but a couple of papers relating to using it as a superconducting weak link have been published[1][2]. However, a broader experimental investigation on the topic is still pending.

The goal of this work is to create a superconductor-graphene-superconductor (SGS) junction and observe some result from the superconducting proximity effect in the graphene.

Graphene

- An interconnected sp² network of carbon atoms
- High electron mobility and density
- Room temperature Quantum Hall Effect
- Unusual band structure first identified in 1947[3]
- Zero-gap semiconductor
- Electron behavior as a massless Dirac fermion near the Dirac point
- Potential future as various components or entire circuits in electronics applications.

Superconducting Proximity Effect

The Josephson Junction

- Cooper Pair propagation
 - Cooper pairs can travel a finite penetration depth through other materials connected to superconductors
 - Graphene's is estimated at ~1μm[2]
- Andreev Reflections
 - A normal conductance electron with the NS boundary to cooperate pair.
 - But graphene is not a normal metal
 - The results could be different or unusual
- Currently published work:
 - Multiple Andreev Reflections in Graphene[1]
 - Supercurrent in short and wide junctions[2]

Results and Future

We were able to develop one working device, pictured at left. At room temperature it seemed to behave normally, but at sub-liquid-He temperatures, the device showed problems due to an overheating ohmic contact. We were unable to make a four-point measurement to try to overcome this, so we are left with undesirable results. In previous devices by K. Konishi, carrier concentrations have been 4.93E+11, and mobilities have been up to 4.83E+4, though the mobilities have been known to decrease with temperature.

Interestingly, even though our measurement temperature was less than a fourth of the electrode Tc, we did not see a supercurrent. Usually the Tc-depression is not so strong.

In future work on the topic, e-beam lithography must be used to make a shorter junction length so the proximity effect can be observed. Varying the length of the channel should eventually be attempted to test the theoretical estimates of the Cooper pair coherence length in Graphene.

References